Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.
نویسندگان
چکیده
We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment.
منابع مشابه
Microbial Diversity and Community Assembly across Environmental Gradients in Acid Mine Drainage
Microorganisms play an important role in weathering sulfide minerals worldwide and thrive in metal-rich and extremely acidic environments in acid mine drainage (AMD). Advanced molecular methods provide in-depth information on the microbial diversity and community dynamics in the AMD-generating environment. Although the diversity is relatively low and in general inversely correlated with the aci...
متن کاملMetagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India
Mine tailings from copper mines are considered as one of the sources of highly hazardous acid mine drainage (AMD) due to bio-oxidation of its sulfidic constituents. This study was designed to understand microbial community composition and potential for acid generation using samples from mine tailings of Malanjkhand copper project (MCP), India through 16S rRNA gene based amplicon sequencing appr...
متن کاملIdentification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage
Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial...
متن کاملSeasonal variations of microbial community in a full scale oil field produced water treatment plant
This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand eff...
متن کاملMagnetic Nano mineral and acid mine drainage interaction: An experimental study
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical aspects of the magnetic Nano- mineral surfaces are studied in contrast to acid mine d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microbiological methods
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2013